منابع مشابه
Bounds on spectrum graph coloring
We propose two vertex-coloring problems for graphs, endorsing the spectrum of colors with a matrix of interferences between pairs of colors. In the Threshold Spectrum Coloring problem, the number of colors is fixed and the aim is to minimize the maximum interference at a vertex (interference threshold). In the Chromatic Spectrum Coloring problem, a threshold is settled and the aim is to minimiz...
متن کاملSafe Lower Bounds for Graph Coloring
The best known method for determining lower bounds on the vertex coloring number of a graph is the linear-programming column-generation technique first employed by Mehrotra and Trick in 1996. We present an implementation of the method that provides numerically safe results, independent of the floating-point accuracy of linearprogramming software. Our work includes an improved branch-and-bound a...
متن کاملA Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring
All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولColoring Graph Powers: Graph Product Bounds and Hardness of Approximation
We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1990
ISSN: 0898-1221
DOI: 10.1016/0898-1221(90)90361-m